Target RBI Grade B 2023 Top 150 Questions Quant

Lecture 5 - Time \& Work

What we have to cover in Time \& Work, Pipes \& Cistern

- Concept 1 - When timing is given

1

- Concept 2 - Comparison between efficiency or time
- Concept 3 - Comparison between work
- Concept 4 - Chain Rule \nearrow
- Data sufficiency and Data Interpretation on Time \& Work

Work $=$ Time \times Efficiency

$$
\begin{aligned}
& \text { Time }=\frac{\text { Work }}{\text { Eff }} \\
& \text { Eff }=\frac{\text { Work }}{\text { Tine }}
\end{aligned}
$$

$10 \operatorname{tog} n \rightarrow 1$ day

Time Given

wortr- Amur

$$
3^{0+0^{-1}}, 91
$$

$$
A+B+C \rightarrow \frac{30}{3+2+1}=\frac{39}{6}=5 \text { days }
$$

$$
\begin{aligned}
& (A+B)(70 \%)+C(\text { Remay })=? \\
& 91=4 \frac{1}{5}+9=13
\end{aligned}
$$

$$
\begin{aligned}
& (70 \%)+c(\text { hemay })=13 \frac{1}{5} \text { day } \\
& \frac{21}{3+2}+\frac{9}{1}=4 \frac{1}{5}+9=10
\end{aligned}
$$

(g)

Q.1) A can do a piece of work in 40 days. He worked at it for 5 days then B finished it in 21 days. In how many days can A, and B together finish the work?
A) 12 days
B) 15 days
C) 18 days
D) 24 days
E) 32 days

,

$$
\begin{aligned}
& A \rightarrow 5 \text { days } x 1=5 \text { unit } \\
& \text { Romany Woald }=40-5=35 \text { int } \\
& \beta=\frac{35 \checkmark}{2 y \nu}=\frac{5}{3} \text { unit Ida }
\end{aligned}
$$

Q.2) Amman can do some work in $\mathbf{2 0}$ days, Vikas can do it in $\mathbf{4 0}$ days and Sudhir can do it in $\mathbf{8 0}$ days. They start the working in turns with Amman starting to work on first day. Followed by Vikas on the second day and by the Sudhir on third day and again by Ama on the Fourth Day and so on till the work is completed. Find the time taken to complete the work.
A) $34 \frac{1}{3}$ days
B) $31 \frac{2}{3}$ days
C) $34 \frac{1}{2}$ days
D) $33 \frac{3}{4}$ days

	80 ant
Amman \rightarrow 20day	4
Viban \rightarrow yodays	2
Sudhin \rightarrow 80 days	1

E) None of these
Q.3) A can do a piece of work in 10 days, B can do it in 15 days and C can do it in 20 days. They start the work together. But, after 2 days, A leaves off and after 3 days, C leaves off. B will do the remaining work. In how many days will the work get complete?
A) 8 days
B) 4 days
C) $93 / 4$ days
D) $84 / 5$ days

$$
\begin{aligned}
& \begin{array}{l}
A+B+C \rightarrow \text { days } \times 13=26 \text { int } \\
B+C \rightarrow 1 \text { day } \times 7=\frac{7 \text { int }}{33 \text { int }}
\end{array} \\
& 2+1+6 \frac{3}{4}=9 \frac{3}{4} \text { day }
\end{aligned}
$$

Q.4) The rates of working of P and Q are in the ratio $7: 5$. The numbers of days taken by them to finish the work are in the ratio:
A) $7: 5$
B) $9: 16$
C.) $5: 7$
D) None

Q.5) A is thrice as good a workman as B and therefore A is able to finish a job in 40 days less than B. Working together, they can do it in -
A) 20 days
B) $22 \quad 1 / 2$ days
C) 15 days
D) 30 days

$$
\begin{gathered}
\text { Wort } \\
= \\
=\left|\begin{array}{cc}
\text { Time } & \text { [fficuy } \\
A & A
\end{array}\right| \\
A+B \\
A+B
\end{gathered}
$$

$$
\begin{array}{rl}
\text { Wort }=3 & 3 \times 20=60 \text { cunt } \\
1 \times 60=60 \text { cit }
\end{array}
$$

$$
1 \times 60=60 \mathrm{cmit}
$$

$$
A+B=\frac{60}{3+1}=\frac{69}{y}=15 d a y
$$

Q.6) To do a certain work B would take three times as long as A and C together and C twice as long as A and B together. The three men together complete the work in 10 days. How long would A take separately?
A) 30 days
B) 24 days
C) 25 days

B,	$A+C$	C	$A+B$	$A+B+C=10$ days
Time	1	Time $2:$	1	Work $=$ Time \times Efl
1				
Eddy	1	$3) \times 3$	Ely $(1-2) \times 4$	$10 \times 12=120$

D) 28 days

$$
\begin{aligned}
& 4-8=101 \\
& A(T \mathrm{mex})=\frac{120}{5}=24 \mathrm{dan}
\end{aligned}
$$

$$
A=5 \sim \quad A(\text { Time })=\frac{120}{5}=24 \operatorname{dan}
$$

$$
B=3^{\prime}
$$

$$
\frac{c=45}{12}
$$

Q.7) 3 men or 5 women can do a work in 12 days. How long will 6 men and 5 women take to finish work?
A) 4 days
B) 10 days

Wont
Wont Comparinon
C) 5 days
D) 2 days

$$
3 M=5 w
$$

$30+15=45 \operatorname{4int}$ day

$$
\frac{m}{\omega}=\frac{5}{3} x
$$

$$
\begin{aligned}
\text { Worst }= & 3 \times 5 \times 12=180 \text { unit } \\
5 \times 3 \times 12 & =180 \text { unit }
\end{aligned}
$$

$$
\frac{180}{48}=4 \text { days }
$$

Q.8) If 12 men and 16 boys can do a piece of work in 5 days and 13 men and 24 boys can do it in 4 days, how long will 7 men and 10 boys take to do it?
A) $9 \frac{1}{3}$ days
B) $8 \frac{1}{3}$ days
C) $8 \frac{2}{3}$ days
D) 8 days

$$
60 m+80 B=52 m+96 B
$$

$$
(12 m+16 B) \times 5 \text { days }=(13 m+24 B) \times 4 \text { day }
$$

$$
60 M-52 M=96 B-80 B
$$

$$
8 M=16 B
$$

$$
\frac{m}{B}=\frac{16}{8}=\frac{2}{1}
$$

$$
\frac{280}{24}=\frac{25}{3}=8 \frac{1}{3} \text { day }
$$

$$
\begin{aligned}
\text { Wort } & =(12 \times 2+16 \times 1) \times 5 \\
& =200 \text { unit }
\end{aligned}
$$

Q.9) 10 men can do a piece of work in 12 days. 5 women can do it in 36 days and 8 children can do it in 30 days. In how many days can 6 men, 9 women and 6 children together complete the piece of work?
A) 8 days
B) 12 days
C) 14 days
D) 6 days
Q.10) A alone would take $6 \frac{3}{4}$ days more to complete the job than if both A and B worked together. If B worked alone, he took 12 days more to complete the job than A and B worked together. What time would they take if both A and B worked together?

$$
\begin{aligned}
& \text { A) } 7 \text { days } \\
& \text { B) } 9 \text { days } \\
& \text { C) } 11 \text { days } \\
& \text { D) None of these }
\end{aligned} \quad A+B=x \text { day }
$$

Q.11) Pipes A and B can fill a tank in 20 hrs and 30 hrs resp. and pipe C can empty the full tank in $15 \overline{\mathrm{hrs}}$. If all the pipes are opened together, how much time will be needed to make the tank full.
A) 30 hrs .
B) 120 hrs
C) 60 hrs
D) 45 hrs

$$
\begin{aligned}
& \begin{array}{l|l}
A \rightarrow(+20)_{\sim} & 60 \text { lar } \\
A \\
B \rightarrow(+30)_{0} & +2
\end{array} \\
& C \rightarrow(-15) /-4 \\
& A+B+C=+3+2-4=|\mathrm{l}+1| \mathrm{h} \\
& \frac{60}{1}=60 \text { down }
\end{aligned}
$$

Q.12) A builder decided to build a farmhouse in $\mathbf{4 0}$ days. He employed 100 men in the beginning and 100 more after 35 days and completed the construction instipulated time. If he had not employed the additional men, how many days behind schedule would it have beep finished?
A) 5 days
B) 6 days
C) 8 days
D) 10 days
E) None of these

4oday 100 men

Q.13) A contractor undertakes to dig a canal 12 km long in 350 days and employs 45 men. After 200 days he find that only 4.5 km of the canal has been completed. Find the number of extra men he must employ to finish the work in time?
A) 45 men
B) 55 men
C) 65 men

E) None of these
$12-4.5=7.5 \mathrm{kM}$

www.edutap.co.in
hello@edutap.co.in
Q.14) A, B, C and D can finish a task in $24,30,40$ and 60 days respectively. If 30 percent of the total work is already completed, then which of the following options is possible to complete the work?

58 A and D worked for 5 days, B and C worked for 5 days $7 \times 5+7 \times 5=70$
[ff A and C worked for 4 days, B worked for 9 days and D worked for 6 days [5. A and B worked for 4 days, C worked for 10 days and D worked for 9 days

$$
\begin{gathered}
(9 \times 4)+(3 \times 10)+(2 \times 9) \\
36+30+18 \\
=84
\end{gathered}
$$

Q.15) If A, B and C together can complete a work in 8 days. In how many days, Aalone can complete the whole work?
Statement I: C alone can complete the work in 24 days. X
Statement II: A and B can complete the work in $\overline{16}$ days. B and C can complete the same work in $9 \frac{3}{5}$ days.
[1] Only statement I is sufficient to answer the question [2] Only statement II is sufficient to answer the question
[3] Both statements are sufficient to answer the question
[4] Either statement I or II is sufficient to answer the question
[5] Neither statement I nor II is sufficient to answer the question

www.edutap.co.in
hello@edutap.co.in

Study the following information carefully and answer the given questions. The following bar graph shows the number of days taken by 5 different persons to complete a work and the table shows the ratio of total number of days taken by another 5 different persons to complete the work.

Number of days taken by different persons to complete the work

Q16. A and R started the work and after 5 days A left the job, R and M complete the remaining work in $31 / 2$ days. Find the total number of days taken by M alone to complete the work?
a) 24 days
b) 20 days
c) 18 days

$\begin{array}{ll}\text { b) } 20 \text { days } \\ \text { c) } 18 \text { days } \\ \text { d) } 16 \text { days } \\ \text { e) None of these }\end{array}$	$A \rightarrow$ today	$12 a$
5	$M=\frac{120}{5}=24$ day n	5

$A+R \rightarrow$ Slay $\times 17=85$ unit

$$
R_{\text {contr }}=120-85=35 \text { cunt }
$$

Study the following information carefully and answer the given questions. The following bar graph shows the number of days taken by 5 different persons to complete a work and the table shows the ratio of total number of days taken by

Number of days taken by different persons to complete the work

Persons	Ratio
$\mathrm{A}: \mathrm{P}$	$5: 8$
$\mathrm{~B}: \mathrm{Q}$	$3: 4$
$\mathrm{C}: \mathrm{R}$	$1: 2$
$\mathrm{D}: \mathrm{S} \leadsto$	$6: 7 \quad 18: 21$
$\mathrm{E}: \mathrm{T}$	$5: 3$

Q17. B and S started the work and after some days B left the job. S completed the remaining work in 9 days. The number of days after which B left the job?
a) 7 days
b) 4 days
c) 6 days d) 5 days

	$105.4 n 1 t$
$B \rightarrow 15$ days	$7 v$
$S \rightarrow$ al days	$5 i$

e) None of these

hello@edutap.co.in

Q18. A can complete a project in 20 days and B can complete the same project in 30 days. If A and B start working on the project together and A quits $\overline{10}$ days before the project is completed, in how many -days will the project be completed?

1. 18 days
B. 27 days
C. 26.67 days
D. 16 days

	604nt	
	$3 \rightarrow$ 20day	3

E. 12 days

$$
\begin{aligned}
(x-10)^{3}+x(2) & =60 \\
3 n-30+2 n & =60 \\
5 x=60+30 & =90 \\
x=\frac{9 p}{x} & =18 d 9 n
\end{aligned}
$$

Q19. Alekh and Alia can together do a piece of work in 5 days which Alia and Amen together can do in 15 days. After Alekh has been working at it for 4 days and Alia for 5 days, Amen then takes ̄ up and completes the work alone in 4 days. In how many days can Ala do the work alone?
A. 30 days
B. 45 days
C. 50 days

	15 unit
Aleph + Alisa \rightarrow Say	3
Ala + Oman \rightarrow I 15 day n	1

D. 25 days
E. None of these

$$
\begin{gathered}
\text { Aleph (4day) }+ \text { Alias (5day) }+ \text { Oman (4day) } \\
\begin{aligned}
&\text { Aleph +ola) (yday) })+\left(\text { Ala }+ \text { Oman.) } 1 \text { day }+A_{\text {man }}(3 \text { day p })=15\right. \\
&(3 \times 4)+(1) 1+\text { Oman }(3 \text { day })=15 \\
&=15=13=2 \\
& \text { Atman }\left.=\frac{2}{3} \text { unit }\right) \text { day }
\end{aligned}
\end{gathered}
$$

Q.20) Aman and Suman alone can do 3/4th and 2/3rd of a work in 36 days individually. If Suman and Gagan together can do the same work in \qquad days and they have together their efficiency 12 units per day. Then in \qquad days Aman, Suman and Gagan will complete the whole work, if they work in alternate days, starting with Gagan, after that Suman and then Aman respectively?
[1] 58 days, 62 days
[2] 36 days, 62 days
[3] 65 days, 36 days

[4] 44 days, 54 days
[5] None of these
www.edutap.co.in
hello@edutap.co.in

Ehank Yow

For More Info Contact us:

$入$ hello@edutap.co.in

